De novo design of transmembrane β-barrels

Author:

Vorobieva Anastassia A.,White Paul,Liang Binyong,Horne Jim E,Bera Asim K.,Chow Cameron M.,Gerben Stacey,Marx Sinduja,Kang Alex,Stiving Alyssa Q.,Harvey Sophie R.,Marx Dagan C.,Khan G. Nasir,Fleming Karen G.ORCID,Wysocki Vicki H.ORCID,Brockwell David J.,Tamm Lukas K.,Radford Sheena E.,Baker David

Abstract

AbstractThe ability of naturally occurring transmembrane β-barrel proteins (TMBs) to spontaneously insert into lipid bilayers and form stable transmembrane pores is a remarkable feat of protein evolution and has been exploited in biotechnology for applications ranging from single molecule DNA and protein sequencing to biomimetic filtration membranes. Because it has not been possible to design TMBs from first principles, these efforts have relied on re-engineering of naturally occurring TMBs that generally have a biological function very different from that desired. Here we leverage the power of de novo computational design coupled with a “hypothesis, design and test” approach to determine principles underlying TMB structure and folding, and find that, unlike almost all other classes of protein, locally destabilizing sequences in both the β-turns and β-strands facilitate TMB expression and global folding by modulating the kinetics of folding and the competition between soluble misfolding and proper folding into the lipid bilayer. We use these principles to design new eight stranded TMBs with sequences unrelated to any known TMB and show that they insert and fold into detergent micelles and synthetic lipid membranes. The designed proteins fold more rapidly and reversibly in lipid membranes than the TMB domain of the model native protein OmpA, and high resolution NMR and X-ray crystal structures of one of the designs are very close to the computational model. The ability to design TMBs from first principles opens the door to custom design of TMBs for biotechnology and demonstrates the value of de novo design to investigate basic protein folding problems that are otherwise hidden by evolutionary history.One sentence summarySuccess in de novo design of transmembrane β-barrels reveals geometric and sequence constraints on the fold and paves the way to design of custom pores for sequencing and other single-molecule analytical applications.

Publisher

Cold Spring Harbor Laboratory

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3