Cortical beta oscillatory activity evoked during reactive balance recovery scales with perturbation difficulty and individual balance ability

Author:

Ghosn Nina J.,Palmer Jacqueline A.ORCID,Borich Michael R.,Ting Lena H.ORCID,Payne Aiden M.ORCID

Abstract

I.AbstractCortical beta oscillations (13-30 Hz) reflect sensorimotor cortical activity, but have not been fully investigated in balance recovery behavior. We hypothesized that more challenging balance conditions would lead to greater recruitment of cortical sensorimotor brain regions for balance recovery. We predicted that beta power would be enhanced when balance recovery is more challenging, either due to more difficult perturbations or due to lower intrinsic balance ability. In 19 young adults, we measured beta power evoked over motor cortical areas (Cz electrode) during 3 magnitudes of backward support-surface translational perturbations using electroencephalography. Peak beta power was measured during early (50-150 ms), late (150-250 ms), and overall (0-400 ms) time bins, and wavelet-based analyses quantified the time course of evoked beta power and agonist and antagonist ankle muscle activity. We further assessed the relationship between individual balance ability measured in a challenging beam walking task and perturbation-evoked beta power within each time bin. In balance perturbations, cortical beta power increased ∼50 ms after perturbation onset, demonstrating greater increases with increasing perturbation magnitude. Balance ability was negatively associated with peak beta power in only the late (150-250 ms) time bin, with higher beta power in individuals who performed worse in the beam walking task. Additionally, the time course of cortical beta power followed a similar waveform as the evoked muscle activity, suggesting these evoked responses may be initially evoked by shared underlying mechanisms. These findings support the active role of sensorimotor cortex in balance recovery behavior, with greater recruitment of cortical resources under more challenging balance conditions. Cortical beta power may therefore provide a biomarker for engagement of sensorimotor cortical resources during reactive balance recovery and reflect the individual level of balance challenge.

Publisher

Cold Spring Harbor Laboratory

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3