Evolutionary history of the Galápagos Rail revealed by ancient mitogenomes and modern samples

Author:

Chaves Jaime A.ORCID,Martinez-Torres Pedro J.,Depino Emiliano A.ORCID,Espinoza-Ulloa SebastianORCID,García-Loor Jefferson,Beichman AnnabelORCID,Stervander MartinORCID

Abstract

AbstractThe biotas of the Galápagos Islands are probably one of the best studied island systems and have provided a broad model of insular species’ origins and evolution. Nevertheless, some Galápagos species remain poorly characterized, such as the Galápagos Rail Laterallus spilonota. This bird species is one of the less explored groups of endemic vertebrates on these islands, due to its elusive behavior, cryptic plumage and restricted distribution. To date there is no genetic assessment of its origins and sister relationships to other taxa, and importantly, there is no data on its current genetic diversity. This lack of information is critical given the adverse fate of island rail species around the world in the recent past. Here we examine the genetics of Galápagos Rails using a combination of mitogenome de novo assembly with multi-locus sequencing (mtDNA+nuDNA) from both modern and historical samples. We show that the Galápagos Rail is part of the ‘American black rail clade’, sister to Black Rail L. jamaicensis, with a colonization of Galápagos dated to 1.2 Mya. The separate analysis of cytb, ND2, and RAG-1 markers demonstrates shallow population structure across sampled islands, possibly due to elevated island connectivity. Additionally, birds sampled from Pinta possessed the lowest levels of genetic diversity, most likely reflecting the impact of past bottlenecks due to habitat loss caused by invasive goats grazing on sensitive habitat. The data presented here highlights the low genetic diversity in this endemic rail species and suggests the use of genetic data (both modern and historical) to guide conservation efforts.

Publisher

Cold Spring Harbor Laboratory

Reference75 articles.

1. Darwin, C. Journal of researches into the natural history and geology of the countries visited during the voyage of the H.M.S. Beagle around the world; D. Appleton New York, 1896;

2. Community Assembly Through Adaptive Radiation in Hawaiian Spiders

3. Grant, P.R. ; Grant, B.R. How and why species multiply: the radiation of Darwin’s finches; Princeton University Press, 2011; ISBN 0-691-14999-2.

4. Adaptation and diversification on islands

5. Mayr, E. ; Vaurie, C. Evolution in the family Dicruridae (birds). Evolution 1948, 238–265.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3