Convergent evolution of Streptomyces protease inhibitors involving a tRNA-mediated condensation-minus NRPS

Author:

Aguilar César,Verdel-Aranda Karina,Ramos-Aboites Hilda E.,Morales Marco Antonio,Licona-Cassani Cuauhtémoc,Barona-Gómez Francisco

Abstract

AbstractSmall peptide aldehydes (SPAs) with protease inhibitory activity are natural products typically synthesized by nonribosomal peptide synthetases (NRPS). SPAs are widely used in biotechnology, as therapeutic agents, they are physiologically relevant and regulate development of the natural hosts. During genome evolutionary analysis of Streptomyces lividans 66 we identified an NRPS-like biosynthetic gene cluster (BGC) that lacked a condensation (C) domain but included a tRNA-Utilizing Enzyme (tRUE) belonging to the leucyl/phenylalanyl (L/F) transferase family. This system was predicted to direct the synthesis of a novel SPA with protease inhibitory activity, called livipeptin. Following genome mining and phylogenomic analyses we confirmed the presence of tRUEs within diverse Streptomyces genomes, including fusions with a C-minus NRPS-like protein. We further demonstrate functional cooperation between these enzymes and provide the biosynthetic rules for the synthesis of livipeptin, expanding the known universe of acetyl-leu/phe-arginal SPAs. The L/F-transferase C-minus NRPS productive interaction was shown to be tRNA-dependent after semisynthetic assays in the presence of RNAse, which contrasts with leupeptin, an acetyl-leu-arginal SPA that we show to be produced by Streptomyces roseous ATCC 31245 via a tRUE-minus BGC with multiple complete NRPSs. Thus, livipeptin and leupeptin are the result of convergent evolution, which has driven the appearance of unprecedented biosynthetic logics directing the synthesis of protease inhibitors thought to be at the core of Streptomyces colony biology. Our results pave the way for understanding this Streptomyces trait, as well as for the discovery of novel natural products following evolutionary genome mining approaches.Abstract importanceConvergent evolution in microbiology is believed to be highly recurrent yet examples that have been comprehensively characterized are scarce. Proteases inhibition by small peptide aldehydes is at the core of many microbiological processes, both within the cell and during colony development, and in microbial ecology. Here we report the biosynthetic foundations of leupeptin, the main Streptomyces protease inhibitor, and of livipeptin, a protease inhibitor produced by Streptomyces lividans. Although these peptides belong to the same chemical class, here we show that their biosynthetic routes result from convergent evolution, as they involve unrelated biosynthetic mechanisms, including the recruitment of a tRNA-utilizing enzyme that functionally replaces the condensation domain of a nonribosomal peptide synthetase during livipeptin biosynthesis. Thus, these results pave the way for understanding Streptomyces protease inhibitors as a trait and provide unprecedented knowledge for genome mining of natural products and synthetic biology where proteases inhibition is desirable.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3