Tyramine receptor drives olfactory response to (E)-2-decenal in the stink bug Halyomorpha halys

Author:

Finetti Luca,Pezzi Marco,Civolani Stefano,Calò Girolamo,Scapoli Chiara,Bernacchia GiovanniORCID

Abstract

AbstractIn insects, the tyramine receptor 1 (TAR1) has been shown to control several physiological functions, including olfaction. We investigated the molecular and functional profile of the Halyomorpha halys type 1 tyramine receptor gene (HhTAR1) and its role in olfactory functions of this pest. Molecular and pharmacological analyses confirmed that the HhTAR1 gene codes for a true TAR1. The RT-qPCR analysis revealed that HhTAR1 is expressed mostly in adult brain and antennae as well as in early development stages (eggs, 1st and 2nd instar nymphs). In particular, among the antennomeres that compose a typical H. halys antenna, HhTAR1 was more expressed in flagellomeres. Scanning electron microscopy (SEM) investigation revealed the type and distribution of sensilla on adult H. halys antennae: both flagellomeres appear rich in trichoid and grooved sensilla, known to be associated with olfactory functions. Through a RNAi approach, topically delivered HhTAR1 dsRNA induced a 50 % gene downregulation after 24 h in H. halys 2nd instar nymphs. An innovative behavioral assay revealed that HhTAR1 RNAi-silenced 2nd instar nymphs were less susceptible to the alarm pheromone component (E)-2 decenal as compared to control. These results provide critical information concerning the TAR1 role in olfaction regulation, especially alarm pheromone reception, in H. halys. Furthermore, considering the emerging role of TAR1 as target of biopesticides, this work paves the way for further investigation on innovative methods for controlling H. halys.

Publisher

Cold Spring Harbor Laboratory

Reference88 articles.

1. Novel structural approaches to study GPCR regulation;International Journal of Molecular Sciences,2017

2. Neuronal mechanisms underlying innate and learned olfactory processing in Drosophila;Current Opinion in Insect Science,2019

3. Quantitative RT-PCR gene evaluation and RNA interference in the Brown Marmorated Stink Bug;PLos One,2016

4. A comparison of the signalling properties of two tyramine receptors from Drosophila

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3