Abstract
ABSTRACTAcinetobacter species are ubiquitous Gram-negative bacteria that can be found in water, soil and as commensals of the human skin. The successful inhabitation of Acinetobacter species in diverse environments is primarily attributable to the expression of an arsenal of stress resistance determinants, which includes an extensive repertoire of metal ion efflux systems. Although metal ion homeostasis in the hospital pathogen Acinetobacter baumannii is known to contribute to pathogenesis, insights into its metal ion transporters for environmental persistence are lacking. Here, we studied the impact of cadmium stress on A. baumannii. Our functional genomics and independent mutant analyses revealed a primary role for CzcE, a member of the cation diffusion facilitator (CDF) superfamily, in resisting cadmium stress. Further, we show that the CzcCBA heavy metal efflux system also contributes to cadmium efflux. Analysis of the A. baumannii metallome under cadmium stress showed zinc depletion and copper enrichment, which are likely to influence cellular fitness. Overall, this work expands our understanding of the role of membrane transporters in A. baumannii metal ion homeostasis.IMPORTANCECadmium toxicity is a widespread problem, yet the interaction of this heavy metal with biological systems is poorly understood. Some microbes have evolved traits to proactively counteract cadmium toxicity, which includes Acinetobacter baumannii. Here we show that A. baumannii utilises a dedicated cadmium efflux protein in concert with a system that is primarily attuned to zinc efflux, to efficiently overcome cadmium stress. The molecular characterization of A. baumannii under cadmium stress revealed how active cadmium efflux plays a key role in preventing the dysregulation of bacterial metal ion homeostasis, which appeared to be the primary means by which cadmium exerts toxicity upon the bacterium.
Publisher
Cold Spring Harbor Laboratory