Abstract
AbstractAntibiotic resistance has become a global threat. In addition to acquiring resistance via horizontal gene transfer, bacteria can evade killing by temporarily modifying their cell envelope to prevent antibiotic-bacterial interactions. A critical gap in knowledge is how bacteria balance the metabolic needs of altering the cell envelope with the constant need to generate energy. Cross-regulation between two signaling networks in Escherichia coli increases resistance to positively charged antibiotics. We show that increased resistance is supported by metabolic re-wiring controlled by the QseB transcription factor. QseB controls the increase in 2-oxoglutarate required for lipid A modification, by upregulating three anaplerotic pathways that feed acetyl Co-A, succinate and fumarate into the TCA cycle. Exogenous addition of 2-oxoglutarate restores antibiotic resistance in the qseB deletion mutant. Antibiotic resistant clinical isolates bear mutations within QseB-mediated anaplerotic pathways. These findings are significant, because they uncover a previously unknown mechanism of metabolic control of antibiotic resistance.
Publisher
Cold Spring Harbor Laboratory
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献