Conditional targeting of phosphatidylserine decarboxylase to lipid droplets

Author:

Kumar Santosh,Chitraju Chandramohan,Farese Robert,Walther Tobias,Burd Christopher G.ORCID

Abstract

AbstractPhosphatidylethanolamine is an abundant component of most cellular membranes whose physical and chemical properties modulate multiple aspects of organelle membrane dynamics. An evolutionarily ancient mechanism for producing phosphatidylethanolamine is to decarboxylate phosphatidylserine and the enzyme catalyzing this reaction, phosphatidylserine decarboxylase, localizes to the inner membrane of the mitochondrion. We characterize a second form of phosphatidylserine decarboxylase, termed PISD-LD, that is generated by alternative splicing of PISD pre-mRNA and localizes to lipid droplets and to mitochondria. Sub-cellular targeting is controlled by a common segment of PISD-LD that is distinct from the catalytic domain and is regulated by nutritional state. Growth conditions that promote neutral lipid storage in lipid droplets favors targeting to lipid droplets, while targeting to mitochondria is favored by conditions that promote consumption of lipid droplets. Depletion of both forms of phosphatidylserine decarboxylase impairs triacylglycerol synthesis when cells are challenged with free fatty acid, indicating a crucial role phosphatidylserine decarboxylase in neutral lipid storage. The results reveal a previously unappreciated role for phosphatidylserine decarboxylase in lipid droplet biogenesis.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3