VOLTAGE-GATED POTASSIUM CHANNELS CONTROL THE GAIN OF ROD-DRIVEN LIGHT RESPONSES IN MIXED-INPUT ON BIPOLAR CELLS

Author:

Joselevitch ChristinaORCID,Klooster Jan,Kamermans Maarten

Abstract

AbstractTo achieve high sensitivity at scotopic levels, vision sacrifices spatial and temporal resolution. The detection of dim light, however, depends crucially on the ability of the visual system to speed up rod signals as they advance towards the brain. At higher light levels, gain control mechanisms are necessary to prevent premature saturation of second-order neurons. We investigated how goldfish mixed-input ON bipolar cells (ON mBCs) manage to partially compensate for the intrinsically slow kinetics of rod signals in the dark-adapted state, and at the same time control the gain of rod signals. Rod-driven responses of axotomized ON mBCs become faster and more transient than those of rod horizontal cells as stimulus intensity increases. This transientness has a voltage-dependency consistent with the activation of a voltage-gated K+ conductance. Simulations with NEURON indicate that the voltage-gated K+ channels responsible for speeding up responses are concentrated at the distal tips of the bipolar cell dendrites, close to the glutamate receptors. These channels act as a gain control mechanism, by shunting the effect of tonically hyperpolarized rods onto the ON mBC. Further activation of K+ channels accelerates the ON mBC response by decreasing the membrane time constant as light levels increase. Therefore, the presence of voltage-gated K+ channels at the dendritic tips of ON mBCs extends the dynamic range of these neurons, and at the same time generates a transient signal already at the first visual synapse.Key Points SummaryHere we show that voltage-gated potassium channels can adjust the gain of the rod input to mixed-input ON bipolar cells and generate a transient signal already at the first visual synapse.These channels are activated during the light-induced depolarization, making bipolar cell light responses smaller, faster, and more transient, effects that can be abolished by the K+ channel blocker TEA.Mathematical simulations suggest that these channels are concentrated at the bipolar cell dendritic tips, close to the site of rod input.This kind of gain control happens at all levels in the retina and is especially important for cells that receive mixed input from rods and cones, in order to prevent premature saturation with increasing light levels and remove the temporal redundancy of the photoreceptor signal.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3