Multifractality distinguishes reactive from proactive cascades in postural control

Author:

Kelty-Stephen Damian G.ORCID,Furmanek Mariusz P.ORCID,Mangalam MadhurORCID

Abstract

AbstractIntermittency is a flexible control process entailing context-sensitive engagement with task constraints. The present work aims to situate the intermittency of dexterous behavior explicitly in multifractal modeling for non-Gaussian cascade processes. Multiscale probability density function (PDF) analysis of the center of pressure (CoP) fluctuations during quiet upright standing yields non-Gaussianity parameters lambda exhibiting task-sensitive curvilinear relationships with timescale. The present reanalysis aims for a finer-grained accounting of how non-Gaussian cascade processes might align with known, separable postural processes. It uses parallel decomposition of non-Gaussianity lambda-vs.-timescale and CoP. Orthogonal polynomials decompose lambda curvilinearity, and rambling-trembling analysis decomposes CoP into relatively more intentional rambling (displacement to new equilibrium points) and less intentional trembling sway (deviations around new equilibrium points). Modeling orthogonal polynomials of non-Gaussianity’s lambda-vs.-timescale relationship allows us to differentiate linear from quadratic decay, each of which indicates scale-invariant and scale-dependent cascades, respectively. We tested whether scale-dependent and scale-invariant cascades serve different roles, that is, responding to destabilizing task demands and supporting the proactive movement to a new equilibrium point, respectively. We also tested whether these cascades appear more clearly in rambling rather than trembling sway. More generally, we test whether multifractal nonlinear correlations supports this capacity of postural control to this two-step differentiation: both into rambling vs. trembling, then into scale-dependent vs. scale-invariant cascades within rambling sway. The results supported these hypotheses. Thus, the present work aligns specific aspects of task setting with aspects of cascade dynamics and confirms multifractal foundations of the organism-task relationship.

Publisher

Cold Spring Harbor Laboratory

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Multifractal Mice: Operationalising Dimensions of Readiness-to-hand via a Feature of Hand Movement;CHI Conference on Human Factors in Computing Systems;2022-04-29

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3