Longitudinal ultrasonic dimensions and parametric solid models of the gravid uterus and cervix

Author:

Louwagie ErinORCID,Carlson Lindsey,Over Veronica,Mao Lu,Fang Shuyang,Westervelt AndreaORCID,Vink Joy,Hall Timothy,Feltovich Helen,Myers KristinORCID

Abstract

AbstractTissue mechanics is central to pregnancy, during which maternal anatomic structures undergo continuous remodeling to serve a dual function to first protect the fetus in utero while it develops and then facilitate its passage out. In this study of normal pregnancy using biomechanical solid modeling, we used standard clinical ultrasound images to obtain measurements of structural dimensions of the gravid uterus and cervix throughout gestation. 2-dimensional ultrasound images were acquired from the uterus and cervix in 30 pregnant subjects in supine and standing positions at four time points during pregnancy (8-14, 14-16, 22-24, and 32-34 weeks). Offline, three observers independently measured from the images of multiple anatomic regions. Statistical analysis was performed to evaluate inter-observer variance, as well as effect of gestational age, gravity, and parity on maternal geometry. A parametric solid model developed in the Solidworks computer aided design (CAD) software was used to convert ultrasonic measurements to a 3-dimensional solid computer model, from which estimates of uterine and cervical volumes were made. This parametric model was compared against previous 3-dimensional solid models derived from magnetic resonance frequency images in pregnancy. In brief, we found several anatomic measurements easily derived from standard clinical imaging are reproducible and reliable, and provide sufficient information to allow biomechanical solid modeling. This structural dataset is the first, to our knowledge, to provide key variables to enable future computational calculations of tissue stress and stretch in pregnancy, making it possible to characterize the biomechanical milieu of normal pregnancy. This vital dataset will be the foundation to understand how the uterus and cervix malfunction in pregnancy leading to adverse perinatal outcomes.

Publisher

Cold Spring Harbor Laboratory

Reference35 articles.

1. World Health Organisation. Preterm birth; 2018. Available from: https://www.who.int/en/news-room/fact-sheets/detail/preterm-birth.

2. Biomechanics of the human uterus

3. The mechanical role of the cervix in pregnancy

4. In-vivo stretch of term human fetal membranes

5. Novel concepts on pregnancy clocks and alarms: redundancy and synergy in human parturition

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3