Abstract
AbstractThe two-pore domain potassium selective (K2P) ion-channels TREK-1, TREK-2, and TRAAK essential mechanical stimulation sensors, and TREK-1/2 also targets for the antidepressant Nor-fluoxetine (Prozac). They respond directly to membrane tension by moving from the “down” to “up” conformation, a transition that is associated with a rise in open-probability. However, the mechanosensitive K2P (mK2P) channels can also open while occupying the down conformation, and although these channels are mostly closed, all structural models represent seemingly open conformations. To understand the dynamics between open/closed and up/down states and determine how membrane tension influences transitions between specific conformations, we use a novel method to analyze tension-driven activation of single purified and reconstituted TREK-2 channels. We screen a panel of prospective schemes to find the mechanism that best accounts for specific TREK-2 characteristics as tension-driven activation, suppression by Nor-fluoxetine, and single-channel kinetics.To adequately describe TREK-2 behavior, mechanistic schemes require two separate tension-sensitive transitions, one that occurs between distinct down conformations and one that moves the channel between down and up states. As membrane tension activates TREK-2, it is a transition within the structural down conformations that account for the major increase in open-probability (> 100 fold); the move from down to up further promotes channel opening, but with much lower potency (~3 fold activation).
Publisher
Cold Spring Harbor Laboratory
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献