Climbing up and down binding landscapes: a high-throughput study of mutational effects in homologous protein-protein complexes

Author:

Heyne Michael,Shirian Jason,Cohen Itay,Peleg YoavORCID,Radisky Evette S.ORCID,Papo NivORCID,Shifman Julia M.ORCID

Abstract

AbstractEach protein-protein interaction (PPI) has evolved to possess binding affinity that is compatible with its cellular function. As such, cognate enzyme/inhibitor interactions frequently exhibit very high binding affinities, while structurally similar non-cognate PPIs possess substantially weaker binding affinities. To understand how slight differences in sequence and structure could lead to drastic changes in PPI binding free energy (ΔΔGbind), we study three homologous PPIs that span nine orders of magnitude in binding affinity and involve a serine protease interacting with an inhibitor BPTI. Using state-of-the-art methodology that combines protein randomization and affinity sorting coupled to next-generation sequencing and data normalization, we report quantitative binding landscapes consisting of ΔΔGbind values for the three PPIs, gleaned from tens of thousands of single and double mutations in the BPTI binding interface. We demonstrate that the three homologous PPIs possess drastically different binding landscapes and lie at different points in respect to the landscape maximum. Furthermore, the three PPIs demonstrate distinct patterns of coupling energies between two simultaneous mutations that depend not only on positions involved but also on the nature of the mutation. Interestingly, we find that in all three PPIs positive epistasis is frequently observed at hot-spot positions where mutations lead to loss of high affinity, while conversely negative epistasis is observed at cold-spot positions, where mutations lead to affinity enhancement. The new insights on PPI evolution revealed in this study will be invaluable in understanding evolution of other biological complexes and can greatly facilitate design of novel high-affinity protein inhibitors.SignificanceProtein-protein interactions (PPIs) have evolved to display binding affinities that can support their function. As such, cognate and non-cognate PPIs could be highly similar structurally but exhibit huge differences in binding affinities. To understand this phenomenon, we studied the effect of tens of thousands of single and double mutations on binding affinity of three homologous protease-inhibitor complexes. We show that binding landscapes of the three complexes are strikingly different and depend on the PPI evolutionary optimality. We observe different patterns of couplings between mutations for the three PPIs with negative and positive epistasis appearing most frequently at hot-spot and cold-spot positions, respectively. The evolutionary trends observed here are likely to be universal to all biological complexes in the cell.

Publisher

Cold Spring Harbor Laboratory

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3