CRISPR/Cas9-engineered inducible gametocyte producer lines as a novel tool for basic and applied research onPlasmodium falciparummalaria transmission stages

Author:

Boltryk Sylwia D.,Passecker Armin,Alder Arne,van de Vegte-Bolmer Marga,Sauerwein Robert W.,Brancucci Nicolas M. B.,Beck Hans-Peter,Gilberger Tim-Wolf,Voss Till S.ORCID

Abstract

AbstractThe malaria parasitePlasmodium falciparumreplicates inside erythrocytes in the blood of infected humans. During each replication cycle, a small proportion of parasites commits to sexual development and differentiates into gametocytes, which are essential for parasite transmission to other human hosts via the mosquito vector. Detailed molecular investigation of gametocyte biology and transmission has been hampered by difficulties in generating large numbers of these highly specialized cells. Here, we engineered marker-freeP. falciparuminducible gametocyte producer (iGP) lines for the routine mass production of synchronous gametocytes. Through targeted overexpression of the sexual commitment factor GDV1, iGP lines consistently achieve sexual commitment rates of 75% and produce gametocytes that are infectious to mosquitoes. Subsequent tagging of a nucleoporin allowed us to visualize marked nuclear transformations during gametocytogenesis and demonstrates that further genetic engineering of iGP lines is an invaluable tool for the targeted exploration of gametocyte biology. We believe the iGP approach developed here opens up unprecedented opportunities that will expedite future basic and applied research onP. falciparumtransmission stages.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3