The auxin transporter PIN1 and the cytokinin transporter AZG1 interact to regulate the root stress response

Author:

Tessi TMORCID,Shahriari M,Maurino VG,Meissner E,Novak OORCID,Pasternak T,Schumacher BS,Flubacher NS,Nautscher M,Williams A,Kazimierczak Z,Strnad MORCID,Thumfart JO,Palme K,Desimone M,Teale WDORCID

Abstract

AbstractRoot system development is crucial for optimal growth and yield in plants, especially in sub-optimal soil conditions. The architecture of a root system is environmentally responsive, enabling the plant to exploit regions of high nutrient density whilst simultaneously minimizing abiotic stress. Despite the vital contribution of root systems to the growth of both model and crop species, we know little of the mechanisms which regulate their architecture. One factor which is relatively well understood is the transport of auxin, a plant growth regulator which defines the frequency of lateral root (LR) initiation and the rate of LR outgrowth. Here we describe a search for proteins which regulate RSA by interacting directly with a key auxin transporter, PIN1. The native separation of PIN1 identified several co-purifying proteins. Among them, AZG1 was subsequently confirmed as a PIN1 interactor. AZG1-GFP fusions co-localized with PIN1 in procambium cells of the root meristem. Roots of azg1 plants contained less PIN1 and blocking proteolysis restored PIN1 levels, observations which are consistent with PIN1 being stabilized by AZG1 in the plasma membrane. Furthermore, we show that AZG1 is a cytokinin import protein; accordingly, azg1 plants are insensitive to exogenously applied cytokinin. In wild-type plants, the frequency of LRs falls with increasing salt concentration, a response which is not observed in azg1 x azg2 plants, although their drought response is unimpaired. This report therefore identifies a potential point for auxin:cytokinin crosstalk in the environmentally-responsive determination of root system architecture.

Publisher

Cold Spring Harbor Laboratory

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3