Disinhibitory and neuromodulatory regulation of hippocampal synaptic plasticity

Author:

Guerreiro Inês,Gu Zhenglin,Yakel Jerrel L.,Gutkin Boris S.

Abstract

AbstractHippocampal synaptic plasticity, particularly in the Schaffer collateral (SC) to CA1 pyramidal excitatory transmission, is considered as the cellular mechanism underlying learning. The CA1 pyramidal neurons are embedded in an intricate local circuitry that contains a variety of interneurons. The roles these interneurons play in the regulation of the excitatory synaptic plasticity remains largely understudied. Our recent experiments showed that repeated cholinergic activation of α7 nACh receptors expressed in oriens-lacunosum-moleculare (OLMα2) interneurons could induce LTP in SC-CA1 synapses, likely through disinhibition by inhibiting stratum radiatum (s.r.) interneurons that provide feedforward inhibition onto CA1 pyramidal neurons, revealing a potential mechanism for local interneurons to regulate SC-CA1 synaptic plasticity. Here, we pair in vitro studies with biophysically-based modeling to uncover the mechanisms through which cholinergic-activated GABAergic interneurons can disinhibit CA1 pyramidal cells, and how repeated disinhibition modulates hippocampal plasticity at the excitatory synapses. We found that α7 nAChR activation increases OLM activity. OLM neurons, in turn inhibit the fast-spiking interneurons that provide feedforward inhibition onto CA1 pyramidal neurons. This disinhibition, paired with tightly timed SC stimulation, can induce potentiation at the excitatory synapses of CA1 pyramidal neurons. Our work further describes the pairing of disinhibition with SC stimulation as a general mechanism for the induction of hippocampal synaptic plasticity.Disinhibition of the excitatory synapses, paired with SC stimulation, leads to increased NMDAR activation and intracellular calcium concentration sufficient to upregulate AMPAR permeability and potentiate the synapse. Repeated paired disinhibition of the excitatory synapse leads to larger and longer lasting increases of the AMPAR permeability. Our study thus provides a novel mechanism for inhibitory interneurons to directly modify glutamatergic synaptic plasticity. In particular, we show how cholinergic action on OLM interneurons can down-regulate the GABAergic signaling onto CA1 pyramidal cells, and how this shapes local plasticity rules. We identify paired disinhibition with SC stimulation as a general mechanism for the induction of hippocampal synaptic plasticity.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3