Pallidal deep brain stimulation alters cortico-striatal synaptic communication in dystonic hamsters

Author:

Heerdegen Marco,Zwar Monique,Franz Denise,Neubert Valentin,Plocksties Franz,Niemann Christoph,Timmermann Dirk,Bahls Christian,van Rienen Ursula,Paap Maria,Perl Stefanie,Lüttig Annika,Richter Angelika,Köhling Rüdiger

Abstract

AbstractBackgroundDeep brain stimulation (DBS) of the globus pallidus internus (GPi) is considered to be the most relevant therapeutic option for patients with severe dystonias, which are thought to arise from a disturbance in striatal control of the GPi, possibly resulting in thalamic disinhibition. The mechanisms of GPi-DBS are far from understood. Hypotheses range from an overall silencing of target nuclei (due to e.g. depolarisation block), via differential alterations in thalamic firing, to disruption of oscillatory activity in the β-range. Although a disturbance of striatal function is thought to play a key role in dystonia, the effects of DBS on cortico-striatal function are unknown.ObjectiveWe hypothesised that DBS, via axonal backfiring, or indirectly via thalamic and cortical coupling, alters striatal network function. We aimed to test this hypothesis in the dtsz-hamster, an animal model of inherited generalised, paroxysmal dystonia.MethodsHamsters (dtsz-dystonic and non-dystonic controls) were bilaterally implanted with stimulation electrodes targeting the entopeduncular nucleus (EPN, equivalent of human GPi). DBS (130 Hz), and sham DBS, were performed in unanaesthetised animals for 3 hours. Synaptic cortico-striatal field potential responses, as well as miniature excitatory postsynaptic currents (mEPSC) and firing properties of medium spiny striatal neurons were subsequently recorded in brain slice preparations obtained from these animals immediately after EPN-DBS, to gauge synaptic responsiveness of cortico-striatal projections, their inhibitory control, and striatal neuronal excitability.ResultsDBS increased cortico-striatal responses in slices from control, but not dystonic animals. Inhibitory control of these responses, in turn, was differentially affected: DBS increased inhibitory control in dystonic, and decreased it in healthy tissue. A modulation of presynaptic mechanisms is likely involved, as mEPSC frequency was reduced strongly in dystonic, and less prominently in healthy tissues, while cellular properties of medium-spiny neurons remained unchanged.ConclusionDBS leads to dampening of cortico-striatal communication with restored inhibitory tone.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3