Identification of genomic regions affecting production traits in pigs divergently selected for feed efficiency

Author:

Delpuech Emilie,Aliakbari Amir,Labrune Yann,Fève Katia,Billon Yvon,Gilbert Hélène,Riquet Juliette

Abstract

AbstractBackgroundFeed efficiency is a major driver of the sustainability of pig production systems. Understanding biological mechanisms underlying these agronomic traits is an important issue whether for environment and farms economy. This study aimed at identifying genomic regions affecting residual feed intake (RFI) and other production traits in two pig lines divergently selected for RFI during 9 generations (LRFI, low RFI; HRFI, high RFI).ResultsWe built a whole dataset of 570,447 single nucleotide polymorphisms (SNPs) in 2,426 pigs with records for 24 production traits after both imputation and prediction of genotypes using pedigree information. Genome-wide association studies (GWAS) were performed including both lines (Global-GWAS) or each line independently (LRFI-GWAS and HRFI-GWAS). A total of 54 chromosomic regions were detected with the Global-GWAS, whereas 37 and 61 regions were detected in LRFI-GWAS and HRFI-GWAS, respectively. Among those, only 15 regions were shared between at least two analyses, and only one was common between the three GWAS but affecting different traits. Among the 12 QTL detected for RFI, some were close to QTL detected for meat quality traits and 9 pinpointed novel genomic regions for some harbored candidate genes involved in cell proliferation and differentiation processes of gastrointestinal tissues or lipid metabolism-related signaling pathways. Detection of mostly different QTL regions between the three designs suggests the strong impact of the dataset on the detection power, which could be due to the changes of allelic frequencies during the line selection.ConclusionsBesides efficiently detecting known and new QTL regions for feed efficiency, the combination of GWAS carried out per line or simultaneously using all individuals highlighted the identification of chromosomic regions under selection that affect various production traits.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3