A novel density-based neural mass model for simulating neuronal network dynamics with conductance-based synapses and membrane current adaptation

Author:

Huang Chih-HsuORCID,Lin Chou-Ching K.ORCID

Abstract

AbstractNowadays, building low-dimensional mean-field models of neuronal populations is still a critical issue in the computational neuroscience community, because their derivation is difficult for realistic networks of neurons with conductance-based interactions and spike-frequency adaptation that generate nonlinear properties of neurons. Here, based on a colored-noise population density method, we derived a novel neural mass model, termed density-based neural mass model (dNMM), as the mean-field description of network dynamics of adaptive exponential integrate-and-fire neurons. Our results showed that the dNMM was capable of correctly estimating firing rate responses under both steady- and dynamic-input conditions. Finally, it was also able to quantitatively describe the effect of spike-frequency adaptation on the generation of asynchronous irregular activity of excitatory-inhibitory cortical networks. We conclude that in terms of its biological reality and calculation efficiency, the dNMM is a suitable candidate to build very large-scale network models involving multiple brain areas.

Publisher

Cold Spring Harbor Laboratory

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Interactive Music Distance Education Platform Based on RBF Algorithm;ICST Transactions on Scalable Information Systems;2023-09-22

2. Exploring Integration Mechanism of Music Instructional Design and Education Informatization;ICST Transactions on Scalable Information Systems;2023-08-21

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3