Control of Blood Glucose Level for Type 1 Diabetes Mellitus using Improved Hovorka Equations: Comparison between Clinical and In-Silico Works

Author:

Mohd Sohadi Nur’Amanina,Som Ayub MdORCID,Mohd Nor Noor ShafinaORCID,Mohd Yusof Nur Farhana,Ali Sherif Abdulbari,Pacana Noor Dyanna Andres

Abstract

AbstractBackgroundType 1 diabetes mellitus (T1DM) occurs due to inability of the body to produce sufficient amount of insulin to regulate blood glucose level (BGL) at normoglycemic range between 4.0 to 7.0 mmol/L. Thus, T1DM patients require to do self-monitoring blood glucose (SMBG) via finger pricks and depend on exogenous insulin injection to maintain their BGL which is very painful and exasperating. Ongoing works on artificial pancreas device nowadays focus primarily on a computer algorithm which is programmed into the controller device. This study aims to simulate so-called improved equations from the Hovorka model using actual patients’ data through in-silico works and compare its findings with the clinical works.MethodsThe study mainly focuses on computer simulation in MATLAB using improved Hovorka equations in order to control the BGL in T1DM. The improved equations can be found in three subsystems namely; glucose, insulin and insulin action subsystems. CHO intakes were varied during breakfast, lunch and dinner times for three consecutive days. Simulated data are compared with the actual patients’ data from the clinical works.ResultsResult revealed that when the patient took 36.0g CHO during breakfast and lunch, the insulin administered was 0.1U/min in order to maintain the blood glucose level (BGL) in the safe range after meal; while during dinner time, 0.083U/min to 0.1 U/min of insulins were administered in order to regulate 45.0g CHO taken during meal. The basal insulin was also injected at 0.066U/min upon waking up time in the early morning. The BGL was able to remain at normal range after each meal during in-silico works compared to clinical works.ConclusionsThis study proved that the improved Hovorka equations via in-silico works can be employed to model the effect of meal disruptions on T1DM patients, as it demonstrated better control as compared to the clinical works.

Publisher

Cold Spring Harbor Laboratory

Reference34 articles.

1. Diabetes: World Health Organization: https://www.who.int/newsroom/fact-sheets/detail/diabetes (Accessed Aug 31, 2020).

2. IDF Diabetes Atlas estimates of 2014 global health expenditures on diabetes

3. ISPAD Clinical Practice Consensus Guidelines: Definition, epidemiology, and classification of diabetes in children and adolescents;Pediatric Diabetes,2018

4. Diagnosis and management of type 1 diabetes in children, young people and adults Guidance: NICE: https://www.nice.org.uk/guidance/cg15 (Accessed Aug 31, 2020).

5. Diagnosis and Classification of Diabetes Mellitus

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3