The RNA Structurome in the Asexual Blood Stages of Malaria Pathogen Plasmodium falciparum

Author:

Alvarez Diana Renteria,Ospina Alejandra,Barwell Tiffany,Zheng Bo,Dey Abhishek,Li Chong,Basu Shrabani,Shi Xinghua,Kadri Sabah,Chakrabarti Kausik

Abstract

AbstractRNA as an effector of biological functions often adopts secondary and tertiary structural folds. Plasmodium falciparum is a deadly human pathogen responsible for the devastating disease called malaria. In this study, we measured the differential accumulation of RNA secondary structures in coding and noncoding transcripts from the asexual developmental cycle in P. falciparum in human red blood cells. Our comprehensive analysis, combining high-throughput nuclease mapping of RNA structures by duplex RNA-seq, immunoaffinity purification and RNA analysis, collectively measured differentially base-paired RNA regions during the parasite development. Our mapping data not only aligned to a diverse pool of RNAs with known structures but also enabled us to identify new structural RNA regions in the malaria genome. On average, ~71% of the genes with secondary structures are found to be protein coding mRNAs. Mapping pattern of these base-paired RNAs corresponded to all parts of protein-coding mRNAs, including 5’ UTR, CDS and 3’ UTR. In addition to histone family genes which are known to form secondary structures in their mRNAs, transcripts from genes which are important for transcriptional and post-transcriptional control, such as unique plant-like transcription factor family, ApiAP2, DNA/RNA binding protein family, Alba, ribosomal proteins and eukaryotic initiation factors involved in translational control and the ones important for RBC invasion and cytoadherence also show strong accumulation of duplex RNA reads in various asexual stages. Intriguingly, our study determined a positive relationship between mRNA structural contents and translation efficiency in P. falciparum asexual blood stages, suggesting an essential role of RNA structural changes in malaria gene expression programs.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3