Learning, Visualizing and Exploring 16S rRNA Structure Using an Attention-based Deep Neural Network

Author:

Zhao ZhengqiaoORCID,Woloszynek StephenORCID,Agbavor Felix,Mell Joshua ChangORCID,Sokhansanj Bahrad A.,Rosen GailORCID

Abstract

AbstractRecurrent neural networks (RNNs) with memory (e.g. LSTMs) and attention mechanisms are widely used in natural language processing because they can capture short and long term sequential information for diverse tasks. We propose an integrated deep learning model for microbial DNA sequence data, which exploits convolutional networks, recurrent neural networks, and attention mechanisms to perform sample-associated attribute prediction—phenotype prediction—and extract interesting features, such as informative taxa and predictive k-mer context. In this paper, we develop this novel deep learning approach and evaluate its application to amplicon sequences. We focus on typically short DNA reads of 16s ribosomal RNA (rRNA) marker genes, which identify the heterogeneity of a microbial community sample. Our deep learning approach enables sample-level attribute and taxonomic prediction, with the aim of aiding biological research and supporting medical diagnosis. We demonstrate that our implementation of a novel attention-based deep network architecture, Read2Pheno, achieves read-level phenotypic prediction and, in turn, that aggregating read-level information can robustly predict microbial community properties, host phenotype, and taxonomic classification, with performance comparable to conventional approaches. Most importantly, as a further result of the training process, the network architecture will encode sequences (reads) into dense, meaningful representations: learned embedded vectors output on the intermediate layer of the network model, which can provide biological insight when visualized. Finally, we demonstrate that a model with an attention layer can automatically identify informative regions in sequences/reads which are particularly informative for classification tasks. An implementation of the attention-based deep learning network is available at https://github.com/EESI/sequence_attention.

Publisher

Cold Spring Harbor Laboratory

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3