Reliability of retinal pathology quantification in age-related macular degeneration: Implications for clinical trials and machine learning applications

Author:

Müller Philipp L.ORCID,Liefers Bart,Treis Tim,Rodrigues Filipa Gomes,Olvera-Barrios Abraham,Paul Bobby,Dhingra Narendra,Lotery Andrew,Bailey Clare,Taylor Paul,Sánchez Clarisa I.,Tufail Adnan

Abstract

ABSTRACTPurposeTo investigate the inter-reader agreement for grading of retinal alterations in age-related macular degeneration (AMD) using a reading center setting.MethodsIn this cross-sectional case series, spectral domain optical coherence tomography (OCT, Topcon 3D OCT, Tokyo, Japan) scans of 112 eyes of 112 patients with neovascular AMD (56 treatment-naive, 56 after three anti-vascular endothelial growth factor injections) were analyzed by four independent readers. Imaging features specific for AMD were annotated using a novel custom-built annotation platform. Dice score, Bland-Altman plots, coefficients of repeatability (CR), coefficients of variation (CV), and intraclass correlation coefficients (ICC) were assessed.ResultsLoss of ellipsoid zone, pigment epithelium detachment, subretinal fluid, and Drusen were the most abundant features in our cohort. The features subretinal fluid, intraretinal fluid, hypertransmission, descent of the outer plexiform layer, and pigment epithelium detachment showed highest inter-reader agreement, while detection and measures of loss of ellipsoid zone and retinal pigment epithelium were more variable. The agreement on the size and location of the respective annotation was more consistent throughout all features.ConclusionsThe inter-reader agreement depended on the respective OCT-based feature. A selection of reliable features might provide suitable surrogate markers for disease progression and possible treatment effects focusing on different disease stages.Translational RelevanceThis might give opportunities to a more time- and cost-effective patient assessment and improved decision-making as well as have implications for clinical trials and training machine learning algorithms.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3