In silico secretome characterization of clinical Mycobacterium abscessus isolates provides insights into antigenic differences

Author:

Cornejo-Granados Fernanda,Kohl Thomas A.,Sotomayor Flor Vásquez,Andres Sönke,Hernández-Pando Rogelio,Hurtado-Ramírez Juan Manuel,Utpatel Christian,Niemann Stefan,Maurer Florian P.,Ochoa-Leyva AdrianORCID

Abstract

AbstractMycobacterium abscessus (MAB) is a widely disseminated pathogenic non-tuberculous mycobacterium (NTM). Like with M. tuberculosis complex (MTBC), excreted / secreted (ES) proteins play an essential role for its virulence and survival inside the host. ES proteins contain highly immunogenic proteins, which are of interest for novel diagnostic assays and vaccines. Here, we used a robust bioinformatics pipeline to predict the secretome of the M. abscessus ATCC 19977 reference strain and fifteen clinical isolates belonging to all three MAB subspecies, M. abscessus subsp. abscessus, M. abscessus subsp. bolletii, and M. abscessus subsp. massiliense. We found that ~18% of the proteins encoded in the MAB genomes were predicted as secreted and that the three MAB subspecies shared > 85 % of the predicted secretomes. MAB isolates with a rough (R) colony morphotype showed larger predicted secretomes than isolates with a smooth (S) morphotype. Additionally, proteins exclusive to the secretomes of MAB R variants had higher antigenic densities than those exclusive to S variants, independently of the subspecies. For all investigated isolates, ES proteins had a significantly higher antigenic density than non-ES proteins. We identified 337 MAB ES proteins with homologues in previously investigated M. tuberculosis secretomes. Among these, 222 have previous experimental support of secretion, and some proteins showed homology with protein drug targets reported in the DrugBank database. The predicted MAB secretomes showed a higher abundance of proteins related to quorum-sensing and Mce domains as compared to MTBC indicating the importance of these pathways for MAB pathogenicity and virulence. Comparison of the predicted secretome of M. abscessus ATCC 19977 with the list of essential genes revealed that 99 secreted proteins corresponded to essential proteins required for in vitro growth. All predicted secretomes were deposited in the Secret-AAR web-server (http://microbiomics.ibt.unam.mx/tools/aar/index.php).

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3