Regulation of intracellular signaling and neuron function by Bardet-Biedl Syndrome proteins in patient-specific iPSC-derived neurons

Author:

Wang Liheng,Liu Yang,Stratigopoulos George,Panigrahi Sunil,Sui Lina,Leduc Charles A.,Glover Hannah J.,De Rosa Maria Caterina,Burnett Lisa C.,Williams Damian J.,Shang Linshan,Goland Robin,Tsang Stephen H.,Wardlaw Sharon,Egli Dieter,Zheng Deyou,Doege Claudia A.,Leibel Rudolph L.

Abstract

AbstractBardet-Biedl Syndrome (BBS) is a rare autosomal recessive disorder caused by mutations in genes encoding components of the primary cilium and characterized by hyperphagic obesity. We developed a cellular model of BBS using induced pluripotent stem cell (iPSCs)-derived hypothalamic arcuate-like neurons. BBS mutations BBS1M390R and BBS10C91fsX95 did not affect neuron differentiation efficiency but caused morphological defects including impaired neurite outgrowth and longer primary cilia. Expression of intact BBS10 normalized cilia length. Single-cell RNA sequencing (scRNA-seq) of BBS1M390R hypothalamic neurons identified several down regulated pathways including insulin and cAMP signaling, and axon guidance. In agreement with scRNA-seq data, insulin-induced AKT phosphorylation at Thr308 was reduced in BBS1M390R and BBS10c91fsX95 human fibroblasts and iPSC-derived neurons, as well as in BBS10 knockdown iPSC-derived neurons. Overexpression of intact BBS10 fully restored insulin receptor tyrosine phosphorylation in BBS10c91fsX95 neurons. Mutations in BBS1 and BBS10 impaired leptin-mediated p-STAT3 activation in both human primary fibroblasts and iPSC-derived hypothalamic neurons. Correction of the BBS mutation by CRISPR rescued leptin signaling. POMC expression in BBS1M390R and BBS10C91fsX95 iPSC-derived hypothalamic neurons was downregulated, as was hypothalamic Pomc in BBS1M390R knockin (KI) mice. In the aggregate, these data provide insights into the anatomic and functional mechanisms by which components of the BBsome in CNS primary cilia mediate effects on energy homeostasis.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3