Automatic Recognition of Auditory Brainstem Response Characteristic Waveform based on BiLSTM

Author:

Chen Cheng,Zhan Li,Pan Xiaoxin,Wang Zhiliang,Guo Xiaoyu,Qin Handai,Xiong Fen,Shi Wei,Shi MinORCID,Ji Fei,Wang Qiuju,Yu NingORCID,Xiao Ruoxiu

Abstract

AbstractBackgroundAuditory brainstem response (ABR) test is widely used in newborn hearing screening and hearing disease diagnosis. Identifying and marking are challenging and repetitive tasks because of complex rules of ABR characteristic waveform and interference of background noise.MethodsThis study proposes an automatic method to recognize ABR characteristic waveform. First, binarization is created to mark 1024 sampling points accordingly. The selected characteristic area of ABR data is 0-8ms. The marking area is enlarged to expand feature information and reduce marking error. Second, a bi-directional long short-term memory (BiLSTM) network structure is established to improve relevance of sampling points, and an ABR sampling point classifier is obtained by training. Finally, mark points are obtained through thresholding.ResultsSpecific structure, related parameters, recognition effect, and noise resistance of network were explored in 614 sets of ABR clinical data, and recognition accuracy of waves I, III, and V can reach 92.91%.DiscussionThus, the proposed method can reduce the repetitive work of doctors and meet accuracy effectively. Therefore, this method has clinical potential.

Publisher

Cold Spring Harbor Laboratory

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3