Linking big biomedical datasets to modular analysis with Portable Encapsulated Projects

Author:

Sheffield Nathan C.ORCID,Stolarczyk MichałORCID,Reuter Vincent P.ORCID,Rendeiro André F.ORCID

Abstract

Organizing and annotating biological sample data is critical in data-intensive bioinformatics. Unfortunately, metadata formats from a data provider are often incompatible with requirements of a processing tool. There is no broadly accepted standard to organize metadata across biological projects and bioinformatics tools, restricting the portability and reusability of both annotated datasets and analysis software. To address this, we present Portable Encapsulated Projects (PEP), a formal specification for biological sample metadata structure. The PEP specification accommodates typical features of data-intensive bioinformatics projects with many samples, whether from individual experiments, organisms, or single cells. In addition to standardization, the PEP specification provides descriptors and modifiers for different organizational layers of a project, which improve portability among computing environments and facilitate use of different processing tools. PEP includes a schema validator framework, allowing formal definition of required metadata attributes for any type of biomedical data analysis. We have implemented packages for reading PEPs in both Python and R to provide a language-agnostic interface for organizing project metadata. PEP therefore presents an important step toward unifying data annotation and processing tools in data-intensive biological research projects.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3