Codependence in the Nephromyces species swarm depends on heterospecific bacterial endosymbionts

Author:

Paight Christopher,Hunter Elizabeth Sage,Lane Christopher E

Abstract

AbstractThe phylum Apicomplexa encompasses 6000 ubiquitous animal parasites, including Plasmodium, the most deadly human parasite on Earth. Anciently parasitic lineages, like apicomplexans, lose core metabolic pathways over time, as they evolve less costly scavenging mechanisms. The recent description of a mutualistic apicomplexan, Nephromyces, from deep within this parasitic group, opened the possibility of an evolutionary innovation that allowed an escape from a parasitic lifestyle. Nuclear genome data from Nephromyces, as well as the three bacterial symbionts that live within this species complex, demonstrate that the bacteria within Nephromyces contribute essential cofactors and amino acids that have enabled Nephromyces to abandon a parasitic lifestyle. Among these, bacterial lipoic acid appears to be a key cofactor for the reduction of virulence in Nephromyces. However, whereas we use FISH microscopy to reveal that each individual Nephromyces harbors no more than one endosymbiont type, no single bacterial endosymbiont can account for all missing metabolites. Based on the unique habitat of Nephromyces, as well as genomic, culturing, and wild population data, we conclude that Nephromyces has evolved as an extraordinary clade of codependent species, unlike any previously described.

Publisher

Cold Spring Harbor Laboratory

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3