LED light gradient as a screening tool for light quality responses in model plant species

Author:

Lejeune P.,Fratamico A.,Bouché F.ORCID,Fernández S. Huerga,Tocquin P.ORCID,Périlleux C.ORCID

Abstract

AbstractCurrent developments in light-emitting diodes (LEDs) technologies have opened new perspectives for sustainable and highly efficient indoor cultivation. The introduction of LEDs not only allows a reduction in the production costs on a quantitative level, it also offers opportunities to manipulate and optimise qualitative traits. Indeed, while plants respond strongest to red and blue lights for photosynthesis, the whole light spectrum has an effect on plant shape, development, and chemical composition. In order to evaluate LEDs as an alternative to traditional lighting sources, the species-specific plant responses to distinct wavelengths need to be evaluated under controlled conditions. Here, we tested the possibility to use light composition gradients in combination with semi-automated phenotyping to rapidly explore the phenotypic responses of different species to variations in the light spectrum provided by LED sources. Plants of seven different species (Arabidopsis thaliana, Ocimum basilicum, Solanum lycopersicum, Brachypodium distachyon, Oryza sativa, Euphorbia peplus, Setaria viridis) were grown under standard white fluorescent light for 30 days, then transferred to a Red:Blue gradient for another 30 days and finally returned to white light. In all species, differences in terms of dimension, shape, and color were rapidly observed across the gradient and the overall response was widely species-dependent. The experiment yielded large amounts of imaging-based phenotypic data and we suggest simple data analysis methods to aggregate the results and facilitate comparisons between species. Similar experimental setups will help achieve rapid environmental optimization, screen new crop species and genotypes, or develop new gene discovery strategies.

Publisher

Cold Spring Harbor Laboratory

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. “Gradient” Experiment in Horticulture Lighting;Engineering Technologies and Systems;2022-05-30

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3