Substrate conformational dynamics drive structure-specific recognition of gapped DNA by DNA polymerase

Author:

Craggs Timothy D.ORCID,Sustarsic Marko,Plochowietz Anne,Mosayebi Majid,Kaju Hendrik,Cuthbert Andrew,Hohlbein Johannes,Domicevica Laura,Biggin Philip C.,Doye Jonathan P. K.,Kapanidis Achillefs N.

Abstract

AbstractDNA-binding proteins utilise different recognition mechanisms to locate their DNA targets. Some proteins recognise specific nucleotide sequences, while many DNA repair proteins interact with specific (often bent) DNA structures. While sequence-specific DNA binding mechanisms have been studied extensively, structure-specific mechanisms remain unclear. Here, we study structure-specific DNA recognition by examining the structure and dynamics of DNA polymerase I (Pol) substrates both alone and in Pol-DNA complexes. Using a rigid-body docking approach based on a network of 73 distance restraints collected using single-molecule FRET, we determined a novel solution structure of the singlenucleotide-gapped DNA-Pol binary complex. The structure was highly consistent with previous crystal structures with regards to the downstream primer-template DNA substrate; further, our structure showed a previously unobserved sharp bend (~120°) in the DNA substrate; we also showed that this pronounced bending of the substrate is present in living bacteria. All-atom molecular dynamics simulations and single-molecule quenching assays revealed that 4-5 nt of downstream gap-proximal DNA are unwound in the binary complex. Coarsegrained simulations on free gapped substrates reproduced our experimental FRET values with remarkable accuracy (<ΔFRET> = -0.0025 across 34 independent distances) and revealed that the one-nucleotide-gapped DNA frequently adopted highly bent conformations similar to those in the Pol-bound state (ΔG < 4 kT); such conformations were much less accessible to nicked (> 7 kT) or duplex (>> 10 kT) DNA. Our results suggest a mechanism by which Pol and other structure-specific DNA-binding proteins locate their DNA targets through sensing of the conformational dynamics of DNA substrates.Significance StatementMost genetic processes, including DNA replication, repair and transcription, rely on DNA-binding proteins locating specific sites on DNA; some sites contain a specific sequence, whereas others present a specific structure. While sequence-specific recognition has a clear physical basis, structure-specific recognition mechanisms remain obscure. Here, we use single-molecule FRET and computer simulations to show that the conformational dynamics of an important repair intermediate (1nt-gapped DNA) act as central recognition signals for structure-specific binding by DNA polymerase I (Pol). Our conclusion is strongly supported by a novel solution structure of the Pol-DNA complex wherein the gapped-DNA is significantly bent. Our iterative approach combining precise single-molecule measurements with molecular modelling is general and can elucidate the structure and dynamics for many large biomachines.

Publisher

Cold Spring Harbor Laboratory

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3