The anaerobic digestion microbiome: a collection of 1600 metagenome-assembled genomes shows high species diversity related to methane production

Author:

Campanaro StefanoORCID,Treu LauraORCID,Rodriguez-R Luis MORCID,Kovalovszki AdamORCID,Ziels Ryan MORCID,Maus IrenaORCID,Zhu XinyuORCID,Kougias Panagiotis G.ORCID,Basile AriannaORCID,Luo GangORCID,Schlüter AndreasORCID,Konstantinidis Konstantinos T.ORCID,Angelidaki IriniORCID

Abstract

AbstractBackgroundMicroorganisms in biogas reactors are essential for degradation of organic matter and methane production through anaerobic digestion process. However, a comprehensive genome-centric comparison, including relevant metadata for each sample, is still needed to identify the globally distributed biogas community members and serve as a reliable repository.ResultsHere, 134 publicly available datasets derived from different biogas reactors were used to recover 1,635 metagenome-assembled genomes (MAGs) representing different bacterial and archaeal species. All genomes were estimated to be >50% complete and nearly half were ≥90% complete with ≤5% contamination. In most samples, specialized microbial communities were established, while only a few taxa were widespread among the different reactor systems. Metabolic reconstruction of the MAGs enabled the prediction of functional traits related to biomass degradation and methane production from waste biomass. An extensive evaluation of the replication index provided an estimation of the growth rate for microbes involved in different steps of the food chain. The recovery of many MAGs belonging to Candidate Phyla Radiation and other underexplored taxa suggests their specific involvement in the anaerobic degradation of organic matter.ConclusionsThe outcome of this study highlights a high flexibility of the biogas microbiome. The dynamic composition and adaptability to the environmental conditions, including temperatures and a wide range of substrates, were demonstrated. Our findings enhance the mechanistic understanding of anaerobic digestion microbiome and substantially extend the existing repository of genomes. The established database represents a relevant resource for future studies related to this engineered ecosystem.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3