Non-invasive spinal electro-magnetic stimulation (SEMS): a tool for evaluation and modulation of lower limb spinal-muscular transmission in healthy adults

Author:

Arvanian Victor L.,Petrosyan Hayk,Zou Chuancai,Leone Cynthia,Zaidi Mohammad,Hou Wei,Tesfa Asrat,Fahmy Magda,Kaufman Mark,Sisto Sue A.ORCID

Abstract

AbstractObjectiveOur earlier electrophysiological recordings using animal models revealed diminished transmission through spared fibers to motoneurons and leg muscles after incomplete spinal cord injury (SCI). Administration of spinal electro-magnetic stimulation (SEMS) at specific parameters induced transient improvement of transmission at neuro-muscular circuitry in SCI animals. In the current human study, we sought translate this knowledge to establish optimal parameters of SEMS for (i) neurophysiological evaluation via Compound Motor Action Potential (CMAP); and (ii) modulation at neuro-muscular circuitry via H-reflex and M-wave response in 12 healthy adults.MethodsSEMS application was with a coil positioned over T12-S1 spinal levels. SEMS-evoked CMAP-responses were wirelessly measured simultaneously from biceps femoris (BF), semitendinosus (ST), vastus lateralis (VL), soleus (SOL), medial gastrocnemius (MG) and lateral gastrocnemius (LG) muscles. We also examined effects of SEMS trains on H-reflex and M-wave responses. H-reflexes and M-waves were measured simultaneously from SOL, MG and LG muscles and evoked by peripheral electrical stimulation of tibial nerves before and after each SEMS session.ResultsSpinal levels for SEMS application to evoke CMAP-responses in corresponding muscles and amplitude/latency of these responses have been established. SEMS applied over L4-S1 spinal levels at 0.2 Hz rate for 30 min induced facilitation of H-reflexes and M-responses. Facilitation lasted for at least 1 hour after stopping SEMS and was associated with a decrease in threshold intensity and leftward shift of recruitment curve for H-reflex and M-wave. SEMS did not alter TMS-evoked responses in hand muscles.ConclusionSEMS is a novel, non-invasive approach for sustained neuromodulation of H-reflex and M-wave responses in triceps surae muscle group. The parameters of SEMS application established in this study for evaluation and neuromodulation of neural pathways innervating leg muscles in healthy individuals may be used as a reference for neurophysiological evaluation and long-lasting plasticity of the lower limb spino-neuromuscular circuitry in individuals with SCI.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3