NanoMEA: a versatile platform for high-throughput analysis of structure-function relationships in human stem cell-derived excitable cells and tissues

Author:

Smith Alec S.T.ORCID,Choi Eunpyo,Gray Kevin,Macadangdang Jesse,Ahn Eun Hyun,Clark Elisa C.,Tyler Phillip,Laflamme Michael A.,Tung Leslie,Wu Joseph C.,Murry Charles E.,Kim Deok-Ho

Abstract

AbstractSomatic cells derived from human pluripotent stem cell (hPSC) sources hold significant potential as a means to improve current in vitro screening assays. However, their inconsistent ability to recapitulate the structural and functional characteristics of native cells has raised questions regarding their ability to accurately predict the functional behavior of human tissues when exposed to chemical or pathological insults. In addition, the lack of cytoskeletal organization within conventional culture platforms prevents analysis of how structural changes in human tissues affect functional performance. Using cation-permeable hydrogels, we describe the production of multiwell nanotopographically-patterned microelectrode arrays (nanoMEAs) for studying the effect of structural organization on hPSC-derived cardiomyocyte and neuronal function in vitro. We demonstrate that nanoscale topographic substrate cues promote the development of more ordered cardiac and neuronal monolayers while simultaneously enhancing cytoskeletal organization, protein expression patterns, and electrophysiological function in these cells. We then show that these phenotypic improvements act to alter the sensitivity of hPSC-derived cardiomyocytes to treatment with arrhythmogenic and conduction-blocking compounds that target structural features of the cardiomyocyte. Similarly, we demonstrate that neuron sensitivity to synaptic blockers is increased when cells are maintained on nanotopographically-patterned Nafion surfaces. The improved structural and functional capacity of hPSC-derived cardiomyocyte and neuronal populations maintained on nanoMEAs may have important implications for improving the predictive capabilities of cell-based electrophysiological assays used in preclinical screening applications.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3