Poisson balanced spiking networks

Author:

Rullán Buxó Camille E.ORCID,Pillow Jonathan W.

Abstract

AbstractAn important problem in computational neuroscience is to understand how networks of spiking neurons can carry out various computations underlying behavior. Balanced spiking networks (BSNs) provide a powerful framework for implementing arbitrary linear dynamical systems in networks of integrate-and-fire neurons (Boerlin et al. [1]). However, the classic BSN model requires near-instantaneous transmission of spikes between neurons, which is biologically implausible. Introducing realistic synaptic delays leads to an pathological regime known as “ping-ponging”, in which different populations spike maximally in alternating time bins, causing network output to overshoot the target solution. Here we document this phenomenon and provide a novel solution: we show that a network can have realistic synaptic delays while maintaining accuracy and stability if neurons are endowed with conditionally Poisson firing. Formally, we propose two alternate formulations of Poisson balanced spiking networks: (1) a “local” framework, which replaces the hard integrate-and-fire spiking rule within each neuron by a “soft” threshold function, such that firing probability grows as a smooth nonlinear function of membrane potential; and (2) a “population” framework, which reformulates the BSN objective function in terms of expected spike counts over the entire population. We show that both approaches offer improved robustness, allowing for accurate implementation of network dynamics with realistic synaptic delays between neurons. Moreover, both models produce positive correlations between similarly tuned neurons, a feature of real neural populations that is not found in the original BSN. This work unifies balanced spiking networks with Poisson generalized linear models and suggests several promising avenues for future research.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3