Abstract
Located in the midbrain, the inferior colliculus (IC) integrates information from numerous auditory nuclei and is an important hub for sound processing. Despite its importance, little is known about the molecular identity and functional roles of defined neuron types in the IC. Using a multifaceted approach in mice, we found that neuropeptide Y (NPY) expression identifies a major class of inhibitory neurons, accounting for approximately one-third of GABAergic neurons in the IC. Retrograde tracing showed that NPY neurons are principal neurons that can project to the medial geniculate nucleus. In brain slice recordings, many NPY neurons fired spontaneously, suggesting that NPY neurons may drive tonic inhibition onto postsynaptic targets. Morphological reconstructions showed that NPY neurons are stellate cells, and the dendrites of NPY neurons in the tonotopically-organized central nucleus of the IC cross isofrequency laminae. Immunostaining confirmed that NPY neurons express NPY, and we therefore hypothesized that NPY signaling regulates activity in the IC. In crosses between Npy1rcreand Ai14 Cre-reporter mice, we found that NPY Y1receptor (Y1R)-expressing neurons are glutamatergic and were broadly distributed throughout the rostro-caudal extent of the IC. In whole-cell recordings, application of a high affinity Y1R agonist led to hyperpolarization in most Y1R-expressing IC neurons. Thus, NPY neurons represent a novel class of inhibitory principal neurons that are well poised to use GABAergic and NPY signaling to regulate the excitability of circuits in the IC and auditory thalamus.
Publisher
Cold Spring Harbor Laboratory