Non-Coding and Loss-of-Function Coding Variants in TET2 are Associated with Multiple Neurodegenerative Diseases

Author:

Cochran J. NicholasORCID,Geier Ethan G.,Bonham Luke W.ORCID,Scott Newberry J.,Amaral Michelle D.,Thompson Michelle L.ORCID,Lasseigne Brittany N.ORCID,Karydas Anna M.,Roberson Erik D.ORCID,Cooper Gregory M.,Rabinovici Gil D.ORCID,Miller Bruce L.ORCID,Myers Richard M.ORCID,Yokoyama Jennifer S.ORCID

Abstract

ABSTRACTWe conducted genome sequencing to search for rare variation contributing to early onset Alzheimer’s disease (EOAD) and frontotemporal dementia (FTD). Discovery analysis was conducted on 493 cases and 671 controls of European ancestry. Burden testing for rare variation associated with disease was conducted using filters based on variant rarity (less than 1 in 10,000 or private), computational prediction of deleteriousness (CADD 10 or 15 thresholds), and molecular function (protein loss-of-function only, coding alteration only, or coding plus non-coding variants in experimentally predicted regulatory regions).Replication analysis was conducted on 16,871 independent cases and 15,941 independent controls. Rare variants in TET2 were enriched in the discovery combined EOAD and FTD cohort (p=6.5×10−8, genome-wide corrected p=0.0037). Most of these variants were canonical loss-of-function or non-coding in predicted regulatory regions. This enrichment replicated across several cohorts of AD and FTD (replication only p=0.0071). The combined analysis odds ratio was 2.2 (95% CI 1.5–3.2) for AD and FTD. The odds ratio for qualifying non-coding variants considered independently from coding variants was 2.1 (95% CI 1.2–3.9). For loss-of-function variants, the combined odds ratio (for AD, FTD, and amyotrophic lateral sclerosis, which shares clinicopathological overlap with FTD) was 3.2 (95% CI 2.0–5.3). TET2 catalyzes DNA demethylation. Given well-defined changes in DNA methylation that occur during aging, rare variation in TET2 may confer risk for neurodegeneration by altering the homeostasis of key aging-related processes. Additionally, our study emphasizes the relevance of non-coding variation in genetic studies of complex disease.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3