Sensorimotor adaptation compensates for distortions of 3D shape information

Author:

Cesanek Evan,Taylor Jordan A.,Domini Fulvio

Abstract

AbstractVisual perception often fails to recover the veridical 3D shape of objects in the environment due to ambiguity and variability in the available depth cues. However, we rely heavily on 3D shape estimates when planning movements, for example reaching to pick up an object from a slanted surface. Given the wide variety of distortions that can affect 3D perception, how do our actions remain accurate across different environments? One hypothesis is that the visuomotor system performs selective filtering of 3D information to minimize distortions. Indeed, some studies have found that actions appear to preferentially target stereo information when it is put in conflict with texture information. However, since these studies analyze averages over multiple trials, this apparent preference could be produced by sensorimotor adaptation. In Experiment 1, we create a set of cue-conflict stimuli where one available depth cue is affected by a constant bias. Sensory feedback rapidly aligns the motor output with physical reality in just a few trials, which can make it seem as if action planning selectively relies on the reinforced cue—yet no change in the relative influences of the cues is necessary to eliminate the constant errors. In contrast, when one depth cue becomes less correlated with physical reality, variable movement errors will occur, causing canonical adaptation to fail as the opposite error corrections cancel out. As a result, canonical adaptation cannot explain the preference for stereo found in studies with variable errors. However, Experiment 2 shows that persistent errors can produce a novel form of adaptation that gradually reduces the relative influence of an unreliable depth cue. These findings show that grasp control processes are continuously modified based on sensory feedback to compensate for both biases and noise in 3D visual processing, rather than having a hardwired preference for one type of depth information.

Publisher

Cold Spring Harbor Laboratory

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3