Subcellular Time Series Modeling of Heterogeneous Cell Protrusion

Author:

Kim Yeesock,Choi Hee June,Lee KwonmooORCID

Abstract

AbstractIn this paper, a new biological modeling approach is proposed for predicting complex heterogeneous subcellular behaviors. Cell protrusion which initiates cell migration has a significant amount of subcellular heterogeneity in micrometer length and minute time scales. It is driven by actin polymerization, e.g., pushing the plasma membrane forward, and then regulated by a multitude of actin regulators. While mathematical modeling is central to system-level understandings of cell protrusion, most of the modeling is based on the ensemble average of actin regulator dynamics at the cellular or population levels, preventing from capturing the heterogeneous cellular activities. With these in mind, a systematic modeling framework is proposed in this paper for predicting velocities of heterogeneous protrusion of migrating cells driven by multiple molecular mechanisms. The modeling framework is developed through the integration of the multiple AutoRegressive eXogenous (ARX) models employing probability density input variables. Unlike conventional ARX models, it provides an effective framework for modeling heterogeneous subcellular behaviors with complex nonlinearities and uncertainties of dynamic systems. To train and validate the proposed model, numerous subcellular time series are extracted from time-lapse movies of migrating PtK1 cells using spinning disk confocal microscope: The current edge velocities and fluorescent intensities of mDia1, actin at the leading edge are used as the input while the future cell edge velocities are selected as an output. It is demonstrated that the proposed approach is highly effective in predicting the future trends of heterogeneous cell protrusion. In particular, by capturing the various multiple activities from the dataset, it is expected that it would improve the understanding of the molecular mechanism underlying cellular and subcellular heterogeneity.

Publisher

Cold Spring Harbor Laboratory

Reference33 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3