Abstract
AbstractThe mechanisms that ensure fertilization of eggs by a single sperm are not fully understood. In all teleosts, a channel called the ‘micropyle’ is the only route of entry for sperm to enter and fertilize the egg. The micropyle forms by penetration of the developing vitelline envelope by a single specialized follicle cell, the micropylar cell, which subsequently degenerates. The mechanisms underlying micropylar cell specification and micropyle formation are poorly understood. Here, we show that an effector of the Hippo signaling pathway, the Transcriptional co-activator with a PDZ-binding domain (Taz), plays crucial roles in micropyle formation and fertilization in zebrafish. Genome editing mutants affectingtazcan grow to adults, however, eggs from homozygoustazfemales are not fertilized even though oocytes in mutant females are histologically normal with intact animal-vegetal polarity, complete meiosis and proper ovulation. However,tazmutant eggs have no micropyle. We show that Taz protein is specifically enriched from mid-oogenesis onwards in two follicle cells located at the animal pole of the oocyte, and co-localizes with the actin and tubulin cytoskeleton. Taz protein and micropylar cell are not detected intazmutant ovaries. Our work identifies a novel role for the Hippo/Taz pathway in micropylar cell specification in zebrafish, and uncovers the molecular basis of micropyle formation in teleosts.
Publisher
Cold Spring Harbor Laboratory
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献