Author:
Liu Honglei,Bridges Daniel,Randall Connor,Solla Sara A.,Wu Bian,Hansma Paul,Yan Xifeng,Kosik Kenneth S.,Bouchard Kristofer
Abstract
AbstractUnderstanding how neuronal signals propagate in local network is an important step in understanding information processing. As a result, spike trains recorded with Multi-electrode Arrays (MEAs) have been widely used to study behaviors of neural connections. Studying the dynamics of neuronal networks requires the identification of both excitatory and inhibitory connections. The detection of excitatory relationships can robustly be inferred by characterizing the statistical relationships of neural spike trains. However, the identification of inhibitory relationships is more difficult: distinguishing endogenous low firing rates from active inhibition is not obvious. In this paper, we propose an in silico interventional procedure that makes predictions about the effect of stimulating or inhibiting single neurons on other neurons, and thereby gives the ability to accurately identify inhibitory causal relationships. To experimentally test these predictions, we have developed a Neural Circuit Probe (NCP) that delivers drugs transiently and reversibly on individually identified neurons to assess their contributions to the neural circuit behavior. With the help of NCP, three inhibitory connections identified by our in silico modeling were validated through real interventional experiments. Together, these methods provide a basis for mapping complete neural circuits.
Publisher
Cold Spring Harbor Laboratory
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献