Ligands, receptors and transcription factors that mediate inter-cellular and intra-cellular communication during ovarian follicle development

Author:

Bernabé Beatriz PeñalverORCID,Woodruff TeresaORCID,Broadbelt Linda JORCID,Shea Lonnie DORCID

Abstract

SUMMARYReliably producing a competent oocyte entails a deeper comprehension of ovarian follicle maturation, a very complex process that includes meiotic maturation of the female gamete, the oocyte, together with the mitotic divisions of the hormone-producing somatic cells. In this report, we investigate mice ovarian folliculogenesis in vivo using publically available time-series microarrays from primordial to antral stage follicles. Manually curated protein interaction networks were employed to identify autocrine and paracrine signaling between the oocyte and the somatic cells (granulosa and theca cells) and the oocyte and cumulus and mural cells at multiple stages of follicle development. We established protein binding interactions between expressed genes that encoded secreted factors and expressed genes that encoded cellular receptors. Some of computationally identified signaling interactions are well established, such as the paracrine signaling from the oocyte to the somatic cells through the secreted oocyte growth factor Gdf9; while others are novel connections in term of ovarian folliculogenesis, such as the possible paracrine connection from somatic secreted factor Ntn3 to the oocyte receptor Neo1. Additionally, we identify several of the likely transcription factors that might control the dynamic transcriptome during ovarian follicle development, noting that the YAP/TAP signaling is very active in vivo. This novel dynamic model of signaling and regulation can be employed to generate testable hypotheses regarding follicle development, guide the improvement of culture media to enhance in vitro ovarian follicle maturation and possibly as novel therapeutic targets for reproductive diseases.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3