An integrated genome-wide multi-omics analysis of gene expression dynamics in the preimplantation mouse embryo

Author:

Israel Steffen,Ernst Mathias,Psathaki Olympia E.,Drexler Hannes C. A.,Casser Ellen,Suzuki Yutaka,Makalowski Wojciech,Boiani Michele,Fuellen Georg,Taher Leila

Abstract

AbstractEarly mouse embryos have an atypical translational machinery comprised of cytoplasmic lattices, poorly competent for translation. Thus, the impact of transcriptomic changes on the operational levels of proteins has likely been overestimated in the past. To find out, we used liquid chromatography–tandem mass spectrometry to detect and quantify 6,550 proteins in the oocyte and in six developmental stages (from zygote to blastocyst) collected in triplicates, and we also performed mRNA sequencing.In contrast to the known split between the 2-cell and 4-cell stages at the transcript level, on the protein level the oocyte-to-embryo transition appeared to last until the morula stage. In general, protein abundance profiles were weakly correlated with those of their cognate mRNAs and we found little or no concordance between changes in protein and transcript expression relative to the oocyte at early stages. However, concordance increased towards morula and blastocyst, hinting at a more direct coupling of proteins with transcripts at these stages, in agreement with the increase in free ribosome abundance. Independent validation by immunofluorescence and qPCR confirmed the existence of genes featuring strongly positively and negatively correlated protein and transcript. Moreover, consistent coverage of most known protein complexes indicates that our dataset represents a large fraction of the expressed proteome. Finally, we identified 20 markers, including members of the endoplasmic reticulum pathway, for discriminating between early and late stages.This resource contributes towards closing the gap between the ‘predicted’ phenotype, based on mRNA, and the ‘actual’ phenotype, based on protein, of the mouse embryo.

Publisher

Cold Spring Harbor Laboratory

Reference88 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3