Dynamic network properties of the interictal brain determine whether seizures appear focal or generalised

Author:

Woldman Wessel,Schmidt Helmut,Abela Eugenio,Chowdhury Fahmida A.,Pawley Adam D.,Jewell Sharon,Richardson Mark P.,Terry John R.

Abstract

AbstractObjectiveCurrent explanatory concepts suggest seizures emerge from ongoing dynamics of brain networks. It is unclear how brain network properties determine focal or generalised seizure onset, or how network properties can be described in a clinically-useful manner. Understanding network properties would cast light on seizure-generating mechanisms and allow to quantify in the clinic the extent to which a seizure is focal or generalised.Methods68 people with epilepsy and 38 healthy controls underwent 19 channel scalp EEG recording. Functional brain networks were estimated in each subject using phase-locking between EEG channels in the 6-9Hz band from segments of 20s without interictal discharges. Simplified brain dynamics were simulated using a computer model. We introduce three concepts: Critical Coupling (Cc), the ability of a network to generate seizures; Onset Index (OI), the tendency of a region to generate seizures; and Participation Index (PI), the tendency of a region to become involved in seizures.ResultsCc was lower in both patient groups compared with controls. OI and PI were more variable in focal-onset than generalised-onset cases. No regions showed higher OI and PI in generalised-onset cases than in healthy controls; in focal cases, the regions with highest OI and PI corresponded to the side of seizure onset.ConclusionsProperties of interictal functional networks from scalp EEG can be estimated using a computer model and used to predict seizure likelihood and onset patterns. Our framework, consisting of three clinically-meaningful measures, could be implemented in the clinic to quantify the diagnosis and seizure onset pattern.

Publisher

Cold Spring Harbor Laboratory

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3