Inter-species differences in response to hypoxia in iPSC-derived cardiomyocytes from humans and chimpanzees

Author:

Ward Michelle C.ORCID,Gilad YoavORCID

Abstract

AbstractDespite anatomical similarities, there appear to be differences in susceptibility to cardiovascular disease between primates. For example, humans are prone to ischemia-induced myocardial infarction unlike chimpanzees, which tend to suffer from fibrotic disease. However, it is challenging to determine the relative contributions of genetic and environmental effects to complex disease phenotypes within and between primates. The ability to differentiate cardiomyocytes from induced pluripotent stem cells (iPSCs), now allows for direct inter-species comparisons of the gene regulatory response to disease-relevant perturbations. A consequence of ischemia is oxygen deprivation. Therefore, in order to understand human-specific regulatory adaptations in the heart, and to potentially gain insight into the evolution of disease susceptibility and resistance, we developed a model of hypoxia in human and chimpanzee cardiomyocytes. We differentiated eight human and seven chimpanzee iPSC lines into cardiomyocytes under normoxic conditions, and subjected these cells to 6 hours of hypoxia, followed by 6 or 24 hours of re-oxygenation. We collected genome-wide gene expression data as well as measurements of cellular stress at each time-point. The overall cellular and transcriptional response to hypoxic stress is generally conserved across species. Supporting the functional importance of precise regulatory response to hypoxia, we found that genes that respond to hypoxic stress in both species are depleted for association with expression quantitative trait loci (eQTLs) in the heart, and cardiovascular-related genes. We also identified hundereds of inter-species regulatory differences in our study. In particular, RASD1, which is associated with coronary artery disease, is up-regulated specifically in humans following hypoxia.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3