Functional transcriptomics in diverse intestinal epithelial cell types reveals robust gut microbial sensitivity of microRNAs in intestinal stem cells

Author:

Peck Bailey C. E.ORCID,Mah Amanda T.,Pitman Wendy A.,Ding Shengli,Lund P. Kay,Sethupathy PraveenORCID

Abstract

ABSTRACTGut microbiota play an important role in regulating the development of the host immune system, metabolic rate, and at times, disease pathogenesis. The factors and mechanisms that mediate communication between microbiota and the intestinal epithelium are poorly understood. We provide novel evidence that microbiota may control intestinal epithelial stem cell (IESC) proliferation in part through microRNAs (miRNAs). We demonstrate that miRNA profiles differ dramatically across functionally distinct cell types of the mouse jejunal intestinal epithelium and that miRNAs respond to microbiota in a highly cell-type specific manner. Importantly, we also show that miRNAs in IESCs are more prominently regulated by microbiota compared to miRNAs in any other intestinal epithelial cell (IEC) subtype. We identify miR-375 as one miRNA that is significantly suppressed by the presence of microbiota in IESCs. Using a novel method to knockdown gene and miRNA expression ex vivo enteroids, we demonstrate that we can knockdown gene expression in Lgr5+ IESCs. Furthermore, when we knockdown miR-375 in IESCs, we observe significantly increased proliferative capacity. Understanding the mechanisms by which microbiota regulate miRNA expression in IESCs and other IEC subtypes will elucidate a critical molecular network that controls intestinal homeostasis and, given the heightened interest in miRNA-based therapies, may offer novel therapeutic strategies in the treatment of gastrointestinal diseases associated with altered IESC function.

Publisher

Cold Spring Harbor Laboratory

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Cellular Organization of the Gastrointestinal Tract;Gastrointestinal Physiology;2018

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3