Intelligible speech synthesis from neural decoding of spoken sentences

Author:

Anumanchipalli Gopala K.,Chartier Josh,Chang Edward F.

Abstract

AbstractThe ability to read out, or decode, mental content from brain activity has significant practical and scientific implications1. For example, technology that translates cortical activity into speech would be transformative for people unable to communicate as a result of neurological impairment2,3,4. Decoding speech from neural activity is challenging because speaking requires extremely precise and dynamic control of multiple vocal tract articulators on the order of milliseconds. Here, we designed a neural decoder that explicitly leverages the continuous kinematic and sound representations encoded in cortical activity5,6 to generate fluent and intelligible speech. A recurrent neural network first decoded vocal tract physiological signals from direct cortical recordings, and then transformed them to acoustic speech output. Robust decoding performance was achieved with as little as 25 minutes of training data. Naïve listeners were able to accurately identify these decoded sentences. Additionally, speech decoding was not only effective for audibly produced speech, but also when participants silently mimed speech. These results advance the development of speech neuroprosthetic technology to restore spoken communication in patients with disabling neurological disorders.

Publisher

Cold Spring Harbor Laboratory

Reference53 articles.

1. Brain–computer interfaces for communication and control

2. Key considerations in designing a speech brain computer interface;J Physiol Paris,2016

3. Brain–Computer Interfaces for Augmentative and Alternative Communication: A Tutorial;American journal of speech-language pathology,2018

4. Electrocorticographic representations of segmental features in continuous speech;Frontiers in human neuroscience,2015

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3