Solving High-Resolution Forward Problems for Extra- and Intracranial Neurophysiological Recordings Using Boundary Element Fast Multipole Method

Author:

Makarov Sergey N,Hämäläinen Matti,Okada Yoshio,Noetscher Gregory M,Ahveninen Jyrki,Nummenmaa Aapo

Abstract

AbstractWe present a general numerical approach for solving the forward problem in high-resolution. This approach can be employed in the analysis of noninvasive electroencephalography (EEG) and magnetoencephalography (MEG) as well as invasive electrocorticography (ECoG), stereoencephalography (sEEG), and local field potential (LFP) recordings. The underlying algorithm is our recently developed boundary element fast multipole method (BEM-FMM) that simulates anatomically realistic head models with unprecedented numerical accuracy and speed. This is achieved by utilizing the adjoint double layer formulation and zeroth-order basis functions in conjunction with the FMM acceleration. We present the mathematical formalism in detail and validate the method by applying it to the canonical multilayer sphere problem. The numerical error of BEM-FMM is 2-10 times lower while the computational speed is 1.5–20 times faster than those of the standard first-order FEM. We present four practical case studies: (i) evaluation of the effect of a detailed head model on the accuracy of EEG/MEG forward solution; (ii) demonstration of the ability to accurately calculate the electric potential and the magnetic field in the immediate vicinity of the sources and conductivity boundaries; (iii) computation of the field of a spatially extended cortical equivalent dipole layer; and (iv) taking into account the effect a fontanel for infant EEG source modeling and comparison of the results with a commercially available FEM. In all cases, BEM-FMM provided versatile, fast, and accurate high-resolution modeling of the electromagnetic field and has the potential of becoming a standard tool for modeling both extracranial and intracranial electrophysiological signals.

Publisher

Cold Spring Harbor Laboratory

Reference88 articles.

1. A review of disability EEG based wheelchair control system: Coherent taxonomy, open challenges and recommendations

2. Alzheimer’s Disease Facts and Figures Report (2018). Alzheimer’s Association. Public Policy Office, Washington, DC. 88 p.

3. Electromagnetic brain mapping

4. Balanis, C.A. (2012). Advanced Engineering Electromagnetics, Wiley, New York, 2nd Ed., ISBN-10: 0470589485.

5. The Application of Electromagnetic Theory to Electrocardiology

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3