A Cross-Genomic Approach for Systematic Mapping of Phenotypic Traits to Genes

Author:

Jim Kam,Parmar Kush,Singh Mona,Tavazoie Saeed

Abstract

We present a computational method for de novo identification of gene function using only cross-organismal distribution of phenotypic traits. Our approach assumes that proteins necessary for a set of phenotypic traits are preferentially conserved among organisms that share those traits. This method combines organism-to-phenotype associations,along with phylogenetic profiles,to identify proteins that have high propensities for the query phenotype; it does not require the use of any functional annotations for any proteins. We first present the statistical foundations of this approach and then apply it to a range of phenotypes to assess how its performance depends on the frequency and specificity of the phenotype. Our analysis shows that statistically significant associations are possible as long as the phenotype is neither extremely rare nor extremely common; results on the flagella,pili, thermophily,and respiratory tract tropism phenotypes suggest that reliable associations can be inferred when the phenotype does not arise from many alternate mechanisms.

Publisher

Cold Spring Harbor Laboratory

Subject

Genetics (clinical),Genetics

Cited by 25 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3