Why flying insects gather at artificial light

Author:

Fabian Samuel TORCID,Sondhi YashORCID,Allen PabloORCID,Theobald JamieORCID,Lin Huai-TiORCID

Abstract

AbstractFor millennia, humans have watched nocturnal insects flying erratically around fires and lamps. Explanations have included theories of “lunar navigation” and “escape to light”. However, without three-dimensional flight data to test them rigorously, this odd behaviour has remained unexplained. We employed high-resolution motion capture in the laboratory and stereo-videography in the field to reconstruct the 3D kinematics of insect flights around artificial lights. Contrary to the expectation of attraction, insects do not steer directly toward the light. Instead, insects turn their dorsum toward the light, generating flight bouts perpendicular to the source. Under natural sky light, tilting the dorsum towards the brightest visual hemisphere helps maintain proper flight attitude and control. Near artificial sources, however, this highly conserved dorsal-light-response can produce continuous steering around the light and trap an insect. Our guidance model demonstrates that this dorsal tilting is sufficient to create the seemingly erratic flight paths of insects near lights and is the most plausible model for why flying insects gather at artificial lights.

Publisher

Cold Spring Harbor Laboratory

Reference51 articles.

1. Dey, P . Fluttering to the Flame: Moths in Art, Literature, and Poetry. Round glass Sustain (2022).

2. Ford, E. B . Moths (The “New Naturalist” Series). London (see pp. 63–66) (1955).

3. Gardiner, B. O. C . The very first light-trap, 1565. Entomologist’s Record and Journal of Variation 45–46 (1995).

4. Effect of spectral composition of artificial light on the attraction of moths;Biol. Conserv,2011

5. Effects of Moonlight and Meteorological Factors on Light and Bait Trap Catches of Noctuid Moths (Lepidoptera: Noctuidae)

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3