Aged Breast Matrix Bound Vesicles Promote Breast Cancer Invasiveness

Author:

Yang JunORCID,Bahcecioglu GokhanORCID,Ronan GeorgeORCID,Zorlutuna PinarORCID

Abstract

AbstractAging is one of the inherent risk factors for breast cancer. Although the influence of age-related cellular alterations on breast cancer development has been extensively explored, little is known about the alterations in the aging breast tissue microenvironment, specifically the extracellular matrix (ECM). Here, for the first time in literature, we have identified tissue resident matrix bound vesicles (MBVs) within the healthy mouse breast ECM, investigated and compared their characteristics in young and aged healthy breast tissues, and studied the effects of these MBVs on normal (KTB21) and cancerous (MDA-MB-231) human mammary epithelial cells with respect to the tissue age that they are extracted from. Using vesicle labeling technology, we were able to visualize cellular uptake of the MBVs directly from the native decellularized tissue sections, showing that these MBVs have regulatory roles in the tissue microenvironment. We mimicked the ECM by embedding the MBVs in collagen gels, and showed that MBVs could be taken up by the cells. The miRNA and cytokine profiling showed that MBVs shifted towards a more tumorigenic and invasive phenotype with age, as evidenced by the more pronounced presence of cancer-associated cytokines, and higher expression levels of oncomiRs miR-10b, miR-30e, and miR-210 in MBVs isolated from aged mice. When treated with MBVs or these upregulated factors, KTB21 and MDA-MB-231 cells showed significantly higher motility and invasion compared to untreated controls. Treatment of cells with a cocktail of miRNAs (miR-10b, miR-30e, and miR-210) or with the agonist of adiponectin (AdipoRon), which both were enriched in the aged MBVs, recapitulated the effect of aged MBVs on cells. This study shows for the first time that the MBVs have a regulatory role in the tissue microenvironment and that the MBV contents change towards cancer-promoting upon aging. Studying the effects of MBVs and their cargos on cellular behavior could lead to a better understanding of the critical roles of MBVs played in breast cancer progression and metastasis.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3